
Journal of Computational Physics 229 (2010) 8167–8179
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
The application of Jacobian-free Newton–Krylov methods to reduce
the spin-up time of ocean general circulation models

Erik Bernsen a,*, Henk A. Dijkstra a, Jonas Thies b, Fred W. Wubs b

a Institute for Marine and Atmospheric research Utrecht, Utrecht University, The Netherlands
b Johann Bernoulli Institute for Mathematics and Computer Science, Groningen University, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 April 2010
Received in revised form 9 July 2010
Accepted 9 July 2010
Available online 16 July 2010

Keywords:
Ocean modelling
Jacobian-free Newton–Krylov methods
Preconditioning
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.07.015

* Corresponding author.
E-mail address: e.bernsen@uu.nl (E. Bernsen).
In present-day forward time stepping ocean-climate models, capturing both the wind-dri-
ven and thermohaline components, a substantial amount of CPU time is needed in a so-
called spin-up simulation to determine an equilibrium solution. In this paper, we present
methodology based on Jacobian-Free Newton–Krylov methods to reduce the computa-
tional time for such a spin-up problem. We apply the method to an idealized configuration
of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown
that a typical speed-up of a factor 10–25 with respect to the original MOM4 code can be
achieved and that this speed-up increases with increasing horizontal resolution.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Ocean modelling is an art. Certainly, we know the basic equations of fluid motion, but ironically we cannot use these
equations directly because they apply to scales which cannot be resolved with the largest supercomputers for years to come.
Consequently, we have to cope with the formidable problem of subgrid-scale representation to obtain the ocean model equa-
tions used to predict ocean flows.

In the late sixties, the first ocean model was developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Descen-
dants of this model still exist and the Modular Ocean Model version 4 (MOM4) is the latest version of this model [1]. Apart
from this model, many other types of ocean models have been developed, such as isopycnal models (e.g., MICOM [2]) and
hybrid coordinate models (e.g., HYCOM [3]). Recently, there also have been fruitful interactions between the engineering
community and ocean modellers resulting in the development of unstructured mesh, finite element [4], and spectral element
models [5].

Many of the ocean models mentioned above use explicit time stepping schemes. The advantage of these methods is that
coding of all the relevant physical processes is relatively simple. The time step, however, is limited because of numerical
amplification of truncation errors (through well-known stability criteria) rather than by the changes in the actual solution
[6]. This limitation becomes even more restrictive as the spatial resolution increases.

In practice, initial conditions of an ocean model for a particular study are derived from so-called spin-up simulations.
Such simulations, which are often started from a state of rest, provide an equilibrium solution of the ocean model. Given that
the equilibration time scale of a three-dimensional ocean flow is about 5000 yr, the spin-up simulations are costly and form a
barrier to extensive sensitivity studies of ocean models. Hence, the limitations of explicit schemes are extremely undesirable
in the computation of equilibrium solutions.
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2010.07.015
mailto:e.bernsen@uu.nl
http://dx.doi.org/10.1016/j.jcp.2010.07.015
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

8168 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
In many of the new approaches in ocean modelling, implicit time-stepping techniques appear in some parts of the mod-
els. However, the potential of implicit techniques in ocean modelling has not been fully explored. Implicit time integration
always leads to a problem where the solution of a system of nonlinear algebraic equations has to be determined. When
applying some variant of the Newton–Raphson method, this leads to the problem of solving large linear systems of equations
with some Jacobian matrix J. The structure of J depends on how the governing equations are discretized but, in general J is
very ill-conditioned. Hence classical iterative methods will not work in solving these linear systems and preconditioning
techniques are needed. The main barriers in applying implicit methods to realistic ocean models are (i) the difficulties in
constructing the Jacobian matrices and (ii) the lack of efficient preconditioning techniques.

Over the last decade, several new preconditioning techniques have been applied to fully-implicit ocean models [7–9] with
the aim to determine the bifurcation behavior of flows in these models. All these techniques were based on the explicit con-
struction of the Jacobian matrix which one needs anyway for solving, for example, the linear stability problem of a particular
steady flow. However, when using the Jacobian-Free (JFNK) method the Jacobian matrix is no longer explicitly needed for
finding the spin-up solution. In addition, this method can directly use an explicit code, which is desirable as these codes
are usually maintained by an user group or large center (for example, GFDL).

The JFNK method was already used to solve the spin-up problem of biogeochemical tracers [10–12] for periodic forcing
and corresponding periodic equilibrium solutions. However, in these biogeochemical tracer models only passive tracers are
considered and dynamical quantities such as, for instance, velocities are assumed to be given. The dynamical spin-up prob-
lem for periodic forcing was treated in Merlis and Khatiwala [13], but only for a relatively simple quasi-geostrophic model.

In this paper, we apply the JFNK method to speed-up the dynamical spin-up of a state-of-the-art ocean model. We use the
simplifying assumption of steady forcing instead of periodic forcing resulting in steady equilibrium solutions rather than
periodic equilibria. Although periodic forcing is the more realistic one, steady forcing remains important, especially if one
is interested in longer time-scales and time-averaged solutions.

In Bernsen et al. [14] we started our development of the JFNK method by using a planetary geostrophic model, where the
momentum equations are diagnostic, and only the temperature and salinity equations are prognostic. Next, we turned to
MOM4 and considered only the wind-driven ocean-circulation by fixing the temperature and salinity field [15]. In the pres-
ent paper, we synthesize both approaches to determine equilibrium solutions of MOM4 with all unknowns (velocities, free
surface height, temperature and salinity) as prognostic variables.

In Section 2, we recapitulate basic features of MOM4 and the JFNK methodology with details in Appendix A. Specific prob-
lems in applying the JFNK method to the full MOM4 equations are addressed in Section 3 with particular details in Appendix
B. Results for a representative test problem are presented in Section 4 and discussed in Section 5.
2. Application of the JFNK method to MOM4

The MOM4 ocean model is described in detail in Griffies et al. [1]. It is a primitive equation model that solves the hydro-
static momentum equations, the continuity equation and the equations for temperature and salinity on a so-called Arakawa
B-grid. In addition, a free-surface formulation is applied where the sea-surface height is part of the solution.

In Bernsen et al. [15] it was shown that the discretized model equations of MOM4 can be cast into the form
d~x
dt
¼~Fð~xÞ; ð1Þ
with~x the state vector, ~F the residual and t the time. The state vector contains horizontal velocities, sea surface height and
the tracer quantities (temperature and salinity) at grid points, whereas the residual ~F contains the discretized horizontal
momentum equations, the vertically integrated continuity equation and the equations for temperature and salinity.

In this paper we are interested in finding equilibrium solutions of MOM4, hence we solve
~Fð~xÞ ¼ 0: ð2Þ
In the JFNK [16] method this system of non-linear equations is solved using a Newton–Raphson iteration. Starting from an
initial guess~x0, the iteration is given by
~xkþ1 ¼~xk þ D~xkþ1; ð3Þ
with D~xkþ1 satisfying
JD~xkþ1 ¼ �~Fð~xkÞ; ð4Þ
where J~xk
is the Jacobian matrix of ~Fð~xkÞ defined by ðJ~xk

Þij ¼ @Fi=@xj. In practice an inexact Newton method is applied where
D~xkþ1 satisfies (4) approximately
kJ~xk
D~xkþ1 þ~Fð~xkÞk2 < gk~Fð~xkÞk2 ð5Þ
with g < 1 a specified accuracy.

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8169
Krylov methods, for instance GMRES [17], are used to solve the linear systems (4). In a Jacobian-Free method, a finite-dif-
ference approximation for the matrix–vector product is applied, exploiting the fact that Krylov methods only require the ef-
fect of applying J~xk

to a vector. An one-sided finite difference approximation
J~xk
~v �

~Fð~xk þ �~vÞ �~Fð~xkÞ
�

; ð6Þ
is used here, with � a small parameter (more on the choice of � follows in Section 3.2 below). The advantage of this approach
is that now only the residual ~F is required and given an explicit timestepping code such as MOM4, this is much easier to
obtain than an explicit representation of the full Jacobian J~xk

. However, even the computation of the residual is non-trivial
in a model such as MOM4 and in Bernsen et al. [15] it was shown how this is done. For convenience and completeness this
is repeated in Appendix A.

3. Specific problems

In practice one encounters several problems when applying the JFNK method to a model such as MOM4. In the next three
subsections, we address some of these specific problems.

3.1. Globalization

One of the problems associated with Newton’s method is global convergence. Convergence is only guaranteed when start-
ing from a point close enough to the equilibrium solution, which is not known a priori; to avoid this problem we use a con-
tinuation method with the forcing strength as a continuation parameter k. The forcing of the model (wind stress and heat
and fresh water fluxes at the surface) depends linearly on k with k = 0 corresponding to no forcing and k = 1 corresponding
to the desired forcing. We now increase the forcing from k = 0 to k = 1 in small steps Dk. For each value of k we use the JFNK
method to solve (2) and we use as many Newton steps as needed to satisfy the stopping criterion
k~Fð~x; kÞk2=N < �N ; ð7Þ
with N the dimension of the state vector and �N a fixed value. Note that here we write ~Fð~x; kÞ instead of ~Fð~xÞ to indicate the
dependence of the residual on the forcing strength k. As an initial guess for the JFNK method we use the equilibrium solution
for the previous value of k If we use a continuation step Dk that is small enough, then the differences between equilibrium
solutions for two successive values of k are very small and hence Newton’s method will converge without problems. Note
that for k = 0 we do not have to apply the JFNK method since then we know that the corresponding equilibrium solution
is given by a state of no motion and uniform temperature and salinity fields.

In addition to this continuation method we use a linesearch method to improve the global convergence of Newton’s
method, resulting in the possibility to take larger continuation steps Dk. The idea is to replace the Newton update (3) with
an update of the form
~xkþ1 ¼~xk þ hkþ1D~xkþ1; ð8Þ
with the value of 0 < hk+1 < 1 determined by the specific linesearch method that is used. Here we use a minimal reduction
method [18] which requires that the residual improves at least with a factor 0 < n < 1 between two successive Newton steps
k~Fð~xkþ1; kÞk2 ¼ k~Fð~xk þ hkþ1D~xkþ1; kÞk2 < nk~Fð~xk; kÞk2: ð9Þ
Starting with hk+1 = 1, we check if (9) is satisfied and if this is not the case then we update hk+1 according to
hkþ1 chkþ1; ð10Þ
with 0 < c < 1. The update (10) is repeated until either (9) holds or the update (10) has been applied a specified maximum
number of times. If this maximum number of updates is reached then the most recent value of hk+1 is used even though (9) is
not satisfied.

3.2. Convective adjustment

In ocean models the hydrostatic momentum equations do not prevent the occurrence of a statically unstable stratification
(@q/@z > 0, where z is vertically upwards). To avoid these unphysical situations a convective adjustment scheme is required.
In MOM4 this is implemented by using a variable vertical mixing coefficient jv for temperature and salinity given by
jvð@q=@zÞ ¼ jv;0 þ f ð@q=@zÞðjv;C � jv;0Þ; ð11Þ
with jv,C� jv,0 and f the step function
f ð@q=@zÞ ¼
0 if @q=@z 6 0;
1 if @q=@z > 0:

�
ð12Þ

8170 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
In this case we have that jv = jv,0 for a stable stratification whereas the vertical mixing coefficient switches to a value of jv,C

on grid points with an unstable stratification. This results for each grid point in a stratification that is either stable or almost
stable, provided that the value of jv,C is chosen large enough. Due to the discontinuity in the function f, Newton’s method will
have problems converging and it is required to use a smoothed function f. We choose
f ð@q=@zÞ ¼
0 if @q=@z 6 0;
1� 1

1þð@q
@zÞ

Dz0
Dq0

jv;C�jv ;0
jv ;C

if @q=@z > 0:

8<
: ð13Þ
with the quotient Dz0/Dq0 determining the sensitivity of jv to @q/@z. Note that this new function f is now continuous but not
continuously differentiable at @q/@z = 0 and hence convergence of Newton’s method is not guaranteed. However, in practice
it turns out that the lack of continuity in the derivative of f does not prevent convergence. Further note that as @q/@z ? 1we
have that f(@q/@z) ? 1 and hence jv ? jv,C. Finally we note that if Dz0/Dq0 is chosen too small then unstable stratifications
can occur whereas for values large enough the stratification is almost stable everywhere.

Although the convergence of Newton’s method is improved by using (13) instead of (12) we still have some difficulties
due to the fact that we use (6) to approximate the matrix vector product. In (6) the choice of � is definitely non-trivial. On the
one hand � should not be too large because this introduces a truncation error, but on the other hand a value that is too small
introduces cancellation errors. There is actually no guarantee that a suitable value of � can be chosen such that both the can-
cellation and truncation errors are negligible. Since the value of (Dz0/Dq0) has to be chosen quite large we have to choose
very small values of � to accurately compute derivatives of the vertical mixing terms involving (13). It turns out that in prac-
tice this value has to be so small that non-negligible cancellation errors are introduced.

This problem is solved by writing (and implementing) the residual as~Fð~xÞ ¼~Fvertð~xÞ þ~Fotherð~xÞ, with~Fvertð~xÞ containing the
vertical mixing terms for the tracer equations and ~Fother all other terms. The action of the Jacobian is now given by
J~xk
~v ¼ J~xk ;vert~v þ J~xk ;other~v ; ð14Þ
with J~xk ;vert and J~xk ;other the Jacobian of~Fvertð~xkÞ and~Fotherð~xkÞ respectively. For the part not including vertical mixing terms we
use a finite difference approximation
J~xk ;other~v ¼
~Fotherð~xk þ �~vÞ �~Fotherð~xkÞ

�
; ð15Þ
with � ¼ 10�7 � ð1þ k~xkk2Þ=kvk2. To evaluate J~xk ;vert~v we use Coleman’s method (see Appendix B) to compute and store Jvert

explicitly in a sparse matrix format. The overhead of constructing this matrix is minimal, since it needs to be done only once
each time a linear system (4) is solved and it requires only six evaluations of~Fvert to construct J~xk ;vert. The advantage over the
finite difference approximation is that cancellation and truncation errors can be minimal because the values of �k,j in (B.1)
can be chosen independently for each non-zero entry of J~xk

. The values that we used are given by �k,j = 10�9jxjj.

3.3. Preconditioning

When solving the system (4) using GMRES or another Krylov method then in practice the method will not converge since
the Jacobian is very ill conditioned. We use a right preconditioner P~xk

to improve the convergence behavior of the Krylov
solver and hence solve a system equivalent to (4)
JP�1
~xk
~zkþ1 ¼ �~Fð~xkþ1Þ; ð16aÞ

P�1
~xk
~zkþ1 ¼ D~xkþ1: ð16bÞ
The Krylov iteration that is used to solve the above system is referred to as the outer Krylov iteration. In order to explain the
preconditioner we first write the Jacobian as a block matrix as follows
J~xk
¼

A G B

D K 0
C E T

2
64

3
75; ð17Þ
where we dropped the subscript~xk of the sub-blocks for the sake of readability. Here the three rows of the matrix represent
the momentum, vertically integrated continuity and tracer equations respectively. The columns represent the dependency
on horizontal velocity, sea surface height and tracers, respectively. The A block contains advection and diffusion of momen-
tum and the Coriolis parameter, the G and D blocks contain the gradient of sea surface height and the divergence of vertically
integrated velocity. The K block contains a smoothing operator to suppress a null-mode existing on the B-grid used in MOM4
and the B block contains the buoyancy terms, i.e. the horizontal pressure gradient due to density differences (and not due to
surface height elevation) given by

R 0
z0¼z grqdz0. For the last row we have the C block representing the dependency of tracer

advection on horizontal velocity and the T block containing the change in advection and diffusion due to changes in the trac-
ers itself. Finally, the dependency on the thickness of the upper most layer in the discretized tracer equations is represented
in block E.

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8171
We now use a block Gauss–Seidel preconditioner, similar to the one described in de Niet et al. [9] and hence P~xk
is defined

by neglecting the block B containing buoyancy terms in the Jacobian J. To apply this preconditioner to a vector

~b ¼ ~buv
~bg

~bts

h iT
with ~buv ;

~bg and ~bts the parts corresponding to the horizontal velocities, sea surface height and tracers

respectively, we need to find ~y satisfying
P~xk
~y ¼~b: ð18Þ
Solving the above system is rather easy since by neglecting the B block the preconditioning matrix P~xk
becomes (block) tri-

angular and hence we first solve the system
A G

D K

� �
~yuv

~yg

" #
¼

~buv
~bg

" #
; ð19Þ
using a GMRES [19,17] process. Because this GMRES process is applied each time that the preconditioner P~xk
needs to be ap-

plied we refer to it as an inner (GMRES) iteration. We use MRILU [20] as a left preconditioner to speed up the convergence of
this inner iteration. Computing this preconditioner requires the matrix of the system (19) which can be obtained using Cole-
man’s method (see Appendix B). Note that this requires the sparsity pattern of the matrix, which was already determined in
Bernsen et al. [15]. Once we have the matrix we can use MRILU to compute a preconditioner for system (19). The compu-
tation of this matrix is actually a very costly step due to the large number of entries in the sparsity pattern and therefore
we compute a new preconditioner for this inner (GMRES) iteration only if it fails to satisfy the stopping criterion
A G

D K

� �
~yuv

~yg

" #
�

~buv
~bg

" #�����
�����

2

< guvg

~buv
~bg

" #�����
�����

2

; ð20Þ
within a specified maximum number of iterations. The next step is to compute the right hand side for the tracer equations as
follows
~bts ~bts � C E½ �
~yuv

~yg

" #
: ð21Þ
Note that we do not explicitly need the matrix [C E], but rather need the action of this matrix which can be computed using
(14). Finally we need to solve the system
T~yts ¼~bts: ð22Þ
and this is done similarly to solving (19), using an inner GMRES iteration with MRILU as a left preconditioner. To compute
this preconditioner we approximate T using Coleman’s method (see Appendix B) and to avoid computing T at every Newton
step we only update this preconditioner for system (22) if the inner (GMRES) iteration fails to satisfy the stopping criterion
kT~yts �~btsk2 < gtsk~btsk2; ð23Þ
within a specified maximum number of iterations. Finally, the vector ~y ¼ ~yuv ~yg ~yts
� �

satisfies (18) and is the result of
applying the preconditioner P~xk

to a vector.
The above procedure requires the availability of the matrix vector product with A, [C E] and the matrix of (19), which can

be computed using (14). For instance, to compute T~yts we use (14) to compute
B~yts

0
T~yts

2
64

3
75 ¼

A G B

D K 0
C E T

2
64

3
75

0
0
~yts

2
64

3
75 ð24Þ
and now T~yts is obtained simply as the third block of the result of the above matrix–vector product. The advantage of this
method is that it is very easy to program once a routine exists that computes the action J v, while the main disadvantage
is that is not a very efficient implementation.

The preconditioner P~xk
described above is well suited for a JFNK approach and to see this we consider how expensive eval-

uating the blocks of the Jacobian using Coleman’s method would be. The B block contains buoyancy terms,
R 0

z0¼z grqdz0, and
due to this vertical integral a lot of non-zero entries are introduced, resulting in the need for a lot of matrix–vector products
when we would explicitly evaluate this block. The C block includes changes in vertical tracer advection due to changes in the
vertical velocity. Since the vertical velocity is eliminated from the state vector (see Appendix A) any dependency on vertical
velocity causes a lot of fill in in the sparsity pattern and hence this block would also require a lot of matrix vector products to
compute. In the block Gauss–Seidel preconditioner that is used here the expensive computation of the B and C block is
avoided since B is neglected and for C only the availability of the matrix–vector product is important. The matrix in(19) actu-
ally needs to be computed and this too is quite expensive for the same reasons that the C block is expensive to compute.
However, this block needs not to be computed very often because it is only needed to compute a preconditioner for solving
the system (19) and in practice the same preconditioner can be used over many Newton steps. Finally, the T block also needs

8172 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
to be computed explicitly, and in practice it is computed more often than the matrix in (19) because of the presence of con-
vective adjustment in this block. This is not really a problem, since evaluating the T block is relatively cheap due to the ab-
sence of a vertical integral as in the B block or the presence of a dependency on vertical velocity.

We note that applying the preconditioner P~xk
introduces some inaccuracies due to the fact that the systems (19) and (22)

are not solved exactly, but only approximately up to the precision specified in (20) and (23). The result of these inaccuracies
is that a slightly different preconditioner P~xk

is used in every outer Krylov iteration. We therefore use the F (lexible) GMRES
[21] method that, contrary to ordinary GMRES, is able to deal with a different preconditioner in each iteration.

4. Results

To test the JFNK method we consider an idealized configuration consisting of a spherical sector with a longitudinal range
of 0� 6 / 6 64� and a latitudinal range of 10�N 6 h 6 74�N. The ocean basin has a constant depth of D = 5500 m. We use 16
layers in the vertical, ranging from 25 m in the upper layer to 871 m in the bottom layer. At the surface we apply a wind
stress profile given by
s/ ¼ ks0 cos 2p h� hmin

hmax � hmin

� 	
; ð25aÞ

sh ¼ 0; ð25bÞ
with the amplitude s0 = 0.1 Pa. Temperature and salinity are restored to
T ¼ T0 þ DT cos p h� hmin

hmax � hmin

� 	
; ð26aÞ

S ¼ S0 þ DS cos p h� hmin

hmax � hmin

� 	
; ð26bÞ
with restoring timescales sT = 30 days and sS = 30 days and amplitudes DT = 12.5 �C and DS = 1 psu for temperature and
salinity respectively. Reference values for temperature and salinity are given by T0 = 15 �C and S0 = 35 psu. The density fol-
lows immediately from temperature and salinity using a linear equation of state
q ¼ q0 � aðT � T0Þ þ bðS� S0Þ; ð27Þ
with the thermal expansion coefficient a = 10�1 kg m�3 K�1, coefficient of saline contraction b = 7.6�10�1 kg m�3 psu�1 and
reference density q0 = 1035 kg m�3. In the horizontal we use Laplacian friction and diffusion for tracers with coefficients gi-
ven by AH = 2.5 � 105 m2 s�1 and KH = 103 m2 s�1 respectively. We use a constant vertical friction coefficient of
AV = 10�3 m2 s�1 and in the parametrization for vertical mixing of tracers (11) we use jv,0 = 10�4 m2 s�1 and jv,C = 1 m2 s�1.
In the case of the new convective adjustment scheme (13) we used a value of (Dz0/Dq0) = 104 m4 kg�1.

We first consider the effect of the new convective adjustment scheme. We performed two 5000 yr simulations with the
explicit timestepping version of MOM4, one with the new convective adjustment scheme (13) and one with the old scheme
(12). We used a horizontal resolution of 16 � 16 grid points and the initial condition at t = 0 consists of a state of rest, with no
sea surface elevation and a uniform temperature and salinity distribution.

In Fig. 1 we plot at each timestep k~Ftð~xðtÞÞk2=k~Ftð~xð0ÞÞk2, with ~Ftð~xðtÞÞ the part of the residual corresponding to the tem-
perature equation (i.e. tendency of temperature) and~xðtÞ the state at time t obtained from the timestepper. For MOM4 with
(12) we see spikes every now and then resulting from the value of jv switching from jv,0 to jv,C or the other way around. For
MOM4 with (13) the residual approaches an equilibrium solution much more smoothly, with only a few sharp peaks in the
residual in the first 300 yr.

From Fig. 1 it is clear that for both the convective adjustment schemes the residual approaches zero and hence for both
schemes an equilibrium solution is obtained. To demonstrate that this is the same equilibrium, we plot the meridional over-
turning streamfunction of the equilibrium solution for the new and old scheme in Fig. 2(a) and (b), respectively. Although
there are quantitative differences, qualitatively the solutions are very similar. In Fig. 2 (c) and (d) the zonally averaged devi-
ation from the reference density is plotted and again the new and old convective adjustment scheme give similar results.
Note that in both cases the stratification appears to be almost stable everywhere. In Fig. 3, the depth averaged and zonally
averaged vertical mixing coefficient is plotted for both equilibrium solutions. For the old scheme the value of jv is up to an
order of magnitude larger at places where convective adjustment is active. However, the patterns in the vertical mixing field
are very similar. For both the old and the new scheme convective adjustment mainly takes place in the northern regions and
near the surface, although along the eastern boundary the region of convective adjustment extends more southward.

We now try to obtain the equilibrium solution, using the scheme (13) in MOM4, with the MOM4-JFNK model. Starting
from a state of rest we increase the forcing k in small steps of Dk = 0.025 from k = 0 to k = 1 as described in Section 3.1.
The stopping criterion of Newton’s method is given by (7) with �N = 10�4. In the minimal reduction method we use values
of n = 0.95 in (9) and c = 0.7 in (10) with the maximum number of hk updates set to 50. The maximum number of (outer)
iterations in the FGMRES method that is used to solve (4) is set to 200 and we do not restart the solver during these 200
iterations. The linear system is only solved up to a low accuracy of g = 0.1 because the convergence rate of Newton’s method
is very poor anyway due to convective adjustment. For solving the systems (19) and (22) we use a stopping criterion of

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Time (yr)

Sc
al

ed
 n

or
m

 o
f r

es
id

ua
l o

f t
em

pe
ra

tu
re

 e
qu

at
io

n
(−

)

Old convective adjustment scheme (11)
New convective adjustment scheme (12)

Fig. 1. The scaled norm of the residual kFt(t)k2/kFt(0)k2 for the temperature equation at each time step of a 5000 yr time-stepping run with MOM4. The grey
line is the result when the old parametrization of convective adjustment (12) is used while the black line is the result of the new parametrization (13).

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8173
gts = 10�4 in (23) and guvh = 10�4 in (20), respectively. The maximum number of (inner) GMRES iterations in both cases is set
to 30 with no restart during these 30 iterations.

Note that in the MOM4-JFNK model we work with a dimensionless state vector and residual. The dimensional and dimen-
sionless state vector, denoted by~x0 and~x respectively, are related by
~x0uv ¼ Xuv~xuv ; ~x0g ¼ Xg~xg; ~x0t ¼ X t~xt ; ~x0s ¼ X s~xs;
where the uv, g, t and s subscripts refer to the part of the state vector corresponding to the momentum equations, sea surface
height equation, temperature equation and salinity equation respectively. The scaling factors are given by
Xuv ¼ 10�2 m s�1, Xg ¼ 10�1 m, X t ¼ 10 �C and X s ¼ 1 psu. The residual is similarly scaled as follows
~F 0uv ¼ F uv~Fuv ; ~F 0g ¼ F g
~Fg; ~F 0t ¼ F t

~Ft ;~F 0s ¼ F s
~Fs ;
with the scaling factors given by F uv ¼ 10�8 m s�2, F g ¼ 10�4 s�1; F t ¼ 10�6 �C s�1 and F s ¼ 10�7 psu s�1.
In Fig. 4(a) we plot kwM(t) � wM,JFNKkmax with wM(t) and wM,JFNK the meridional overturning streamfunction of the MOM4

timestepping model at time t and of the steady-state solution of the MOM4-JFNK model, respectively. Clearly the timestep-
per and the JFNK method approach the same equilibrium solution. In Fig. 4(b) we plot logjwM(t) � wM,JFNKj at t = 5000 yr
showing only very small differences between the solution of the timestepper and of the JFNK method.

We now apply the JFNK method for higher resolutions: 16 � 16 � 16, 32 � 32 � 16 and 64 � 64 � 16. For all resolutions
the same physical and numerical parameters, which are given above, are used. For all resolutions the JFNK method converges
and an equilibrium solution is found. In Fig. 5 the average number of (outer) FGMRES iterations per Newton step is reported
as a function of the forcing strength k. For all resolutions convergence is very quickly when the forcing is almost zero but it
becomes slower at stronger forcing; the number of iterations also increases with increasing resolution. However, except for
the very last continuation step, the difference in iterations between the resolutions 32 � 32 � 16 and 64 � 64 � 16 is not
very large. In Table 1 we see that the number of inner iterations for solving the systems (19) and (22) increases for higher
resolutions. The total number of Newton steps even decreases and this is due to the fact that the stopping criterion (7) de-
pends scales with the number of grid points.

Most important is of course the CPU time that was needed. For each resolution we make a comparison to the CPU time
that a 5000 yr timestepping run at the same resolution would cost. To compute this CPU time a much shorter run was per-
formed to estimate the amount of CPU time that is required per physical year of timestepping. Note that these timestepping
runs use an almost identical configuration as the MOM4-JFNK model, with slight differences in parameters and the old con-
vective adjustment scheme (13) is used. However, these differences are not expected to change the timing of the model. At
the 16 � 16 � 16 resolution a timestep of 1 day for the tracers and surface height equation, 0.5 days for the momentum
equations and 90 barotropic sub-timesteps are used. For the 32 � 32 � 16 and 64 � 64 � 16 resolutions these timesteps
are divided by two and four, respectively.

Fig. 3. (a) The vertically averaged vertical mixing coefficient (m2 s�1) on a log scale of the equilibrium solution found after 5000 yr for the test problem with
the old convective adjustment scheme (12). (b) Same, but now with scheme (13). (c) The zonally averaged vertical mixing coefficient (m2 s�1) on a log scale
of the equilibrium solution found after 5000 yr for the test problem with the old convective adjustment scheme (12). (d) Same, but now with scheme (13).

8174 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
For all resolutions the JFNK method was clearly faster than a timestepping run of 5000 yr at the same resolution. The
speed-up is in the order of a factor 12–24 depending on resolution. In this example a higher resolution seems to favor
the JFNK method. For the timestepper, doubling the horizontal resolution leads to an increase of approximately a factor
of eight in CPU time, due to four times as many grid points and the halving of the timestep. The JFNK method suffers less
from the higher resolutions with a doubling of horizontal resolution leading to an increase of CPU time with a factor of
4.4 or 6.4 depending on resolution.
5. Summary and discussion

In this paper the JFNK method has been applied to the state-of-the-art model MOM4 to shorten the CPU time of the com-
putation of an equilibrium state of the model. As a typical example, we have computed the wind- and thermohaline driven
flows in a northern hemispheric spherical sector. The implementation of this method is far from trivial because of the pre-
conditioning and because of the implementation of convective adjustment. A slight adaptation of the original convective
adjustment scheme in MOM4 was therefore required.

As demonstrated, the speed-up ranges from a factor of 12 (for the lowest resolution case) to 24 (for the highest resolution
case). The JFNK method scales better with horizontal resolution than the timestepper. The timestepper requires in principle a
factor of 8 more CPU time due to doubling of horizontal resolution, while for the JFNK method this turns out to be signifi-
cantly lower. Improvements in these speed-ups are likely possible. For instance it is possible to use a less strict stopping cri-
terion for Newton’s method (higher value of �N in (7)) for forcing straights k < 1. It is after all only the equilibrium solution at

Fig. 4. (a) Maximum difference between the meridional overturning streamfunction (Sv) obtained by the timestepper (WM(t)) and by the JFNK method
(WM,JFNK) versus time in years. In (b) this difference field is plotted at the final time step of the timestepper at t = 5000 yr on a log scale.

Fig. 2. (a) The meridional overturning streamfunction (Sv) of the equilibrium solution found in MOM4 after 5000 yr for the test problem with the old
convective adjustment scheme (12). (b) Same, but now with scheme (13). (c) The zonally averaged deviation from the reference density (kg m�3) of the
equilibrium solution found after 5000 yr with (12). (d) Same, but now with scheme (13).

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8175

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

λ

#F
G

M
R

ES
 it

er
at

io
ns

 (−
)

16x16x16
32x32x16
64x64x16

Fig. 5. The average number of (outer) FGMRES iterations per Newton iteration at a resolution of 16 � 16 � 16, 32 � 32 � 16 and 64 � 64 � 16 as a function
of the forcing strength k.

Table 1
Number of Newton iterations, FGMRES outer iterations, (F)GMRES inner iterations and F evaluations for several resolutions. Also the total
CPU time for the MOM4-JFNK model and the speedup compared with 5000 yr of timestepping with MOM4 is reported.

Resolution 16 � 16 � 16 32 � 32 � 16 64 � 64 � 16

Number of unknowns 15,648 64,544 262,176
Total number of Newton iterations 145 125 116
Total number of F evaluations (�105) 1.4 2.5 2.9
Average number of iterations for (19) 4.4 6.4 8.3
Average number of iterations for (22) 12.3 15.8 18.4
CPU time of MOM4-JFNK (h) 1.1 7.04 31.8
CPU time of MOM4 timestepping (h) 14.0 96.6 763.1
Speedup 12.7 13.1 24.0

8176 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
k = 1 that we are really interested in. Another improvement could be to replace the function f in (13) with a function that is
continuous and continuously differentiable everywhere possibly leading to a higher convergence rate of Newton’s method.

In this article we used the JFNK method to compute steady states only, but it can also be applied to transient runs using a
fully implicit time-stepping scheme. Although we expect lower speed-ups than for the spin-up problem, there is still a pos-
sible reduction in CPU time due to the much larger timesteps that can then be used. We expect that the systems resulting
from these implicit time-stepping schemes will be easier to solve than the full steady system, because it is generally better
conditioned due to an increase of the diagonal values of the Jacobian matrix. Furthermore, implicit timestepping could be
used to obtain periodic equilibria under periodic boundary conditions. We consider periodic forcing as a steady forcing plus
a periodic perturbation. Hence we can use a two-step approach: First a spin-up with a steady forcing and next starting from
the resulting equilibrium solution a transient computation with periodic forcing.

Applying the method to other ocean models is certainly possible, but some effort is required. As a first step the residual
should be made available and it really depends on the implementation of the existing explicit timestepping code how dif-
ficult this is. This is made more complicated by the fact that we actually need two residual functions (~Fvert and~Fother) and also
because most ocean models use some kind of barotropic-baroclinic mode-splitting.

For ocean models that use a rigid-lid approach instead, we have to realize that it is no longer possible to express the mod-
el as (1) because the continuity equation is an algebraic constraint without time derivatives. In this case (1) should then be
replaced with Md~x=dt ¼~Fð~xÞ where M is a diagonal matrix having the value of one at the diagonal elements for the prognos-
tic equations and a value of zero for algebraic constraints.

Changing the parametrization for convective adjustment is usually easily done in most ocean models provided that con-
vective adjustment is already implemented using a variable vertical mixing coefficient. Finally, in the preconditioner we use
the sparsity pattern of several parts of the Jacobian matrix to compute blocks of the Jacobian matrix with Coleman’s method.
There is an ongoing effort to apply JFNK methods to the Parallel Ocean Program (POP [22]) ocean model as well and it turns
out that the sparsity patterns for MOM4 and POP are in fact very similar.

In this paper we used restoring boundary conditions for both temperature and salinity. A more common choice of bound-
ary conditions are mixed boundary conditions, where temperature is restored to a prescribed profile and for salinity a fresh-
water flux is prescribed. When such a flux boundary condition is used a null space is introduced and the salinity field of the
equilibrium solution is only determined up to a constant. In principle, to remove this null space we can replace one of the
equations of the residual with a constraint on total salinity

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8177
~w �~xs ¼ Stot;
with Stot the total amount of salt in the ocean,~xs the part of the state vector corresponding to the salinity field and ~w con-
taining the corresponding volumes of grid boxes. Of course, these changes in the residual require that the preconditioner is
adjusted as well.

In summary, the methodology in this paper may lead to a more efficient computation of spin-up solutions in a large class
of state-of-the-art ocean models.
Appendix A. Computation of the residual in MOM4

In this appendix we show how the residual in MOM4 is computed making use of the existing timestepping code as much
as possible. MOM4 uses The Arakawa B-grid which is a staggered grid with two types of cells: U-cells for horizontal velocities
and T-cells for sea-surface height and tracers. The corners of each T-cell consist of the centers of four U-cells and both hor-
izontal velocity components are defined on the same grid points. MOM4 uses a two level time-stepping scheme for which
the grid is also staggered in time. At time-level s � 1/2, that is at time t = Dt(s � 1/2), the variables on T-cells are defined,
such as temperature, salinity and pressure. At the time-level s, variables on the U-cells are defined, such as the horizontal
velocities. The only variable defined at both time-levels is the sea-surface height.

A simplified description of the two-level time-stepping scheme is given below. At time-level s � 1/2, the sea-surface
height ðgs�1=2

T Þ, temperature (Ts�1/2), salinity (Ss�1/2) and vertical grid spacing ðDzs�1=2
T Þ are given at T-cells. Furthermore,

the horizontal velocities ð~usÞ, the vertically integrated velocities ð~UsÞ and the vertical grid spacing ðDzs
uÞ are available at

U-cells and at time-level s. At time-level s the sea-surface height is given at U-cells ðgs
uÞ as well as T-cells ðgs

TÞ. To update
the variables from s � 1/2 to s + 1/2 and from s to s + 1, the following procedure is applied:

1. Update variables defined on time-level s � 1/2 to time-level s + 1/2.
(a) Compute the tendency (i.e. an approximation of the time derivative) dgT of the sea-surface height at time-level s using

~Us and calculate the thickness weighted tendencies, dT and dS, for temperature and salinity. This weighting is needed
for the conservation of heat and salinity. Note that for the computation of dT and dS we need not only horizontal
velocities, which are given, but also vertical velocities, which follow immediately from the horizontal velocities using
the continuity equation. The vertical diffusion terms are usually treated implicitly, but optionally it is also possible to
treat them explicitly.

(b) Update the sea-surface height to time-level s + 1/2:
gsþ1=2
T gs�1=2

T þ dgT
and update the vertical grid spacing Dzsþ1=2
T at T-cells.

(c) Now update T and S from s � 1/2 to s + 1/2:
ðT; SÞsþ1=2 ¼ Dzs�1=2
T ðT; SÞs�1=2 þ DtðdT; dSÞ

Dzsþ1=2
T

:

2. Update variables defined on time-level s to time-level s + 1.
(a) Update the barotropic variables, using sub-time stepping, to obtain ~Usþ1; gsþ1

u and gsþ1
T .

(b) Update the vertical grid spacing Dzsþ1
u at U-cells using the sea-surface height obtained in the previous step.

(c) Compute the thickness weighted baroclinic velocity tendencies, say d~u. These are obtained from the momentum
equations, where the term Dzugrg is omitted from the pressure gradient term.

(d) Compute the velocity field at s + 1 as follows
~usþ1 ¼ Dzs
u
~us þ Dtd~u
Dzsþ1

u

and correct these velocities such that the vertically integrated velocity matches the vertically integrated velocity ob-
tained from the barotropic sub-time stepping

~usþ1 ~usþ1 þ
~Usþ1 �

P
Dzsþ1

u
~usþ1P

Dzsþ1
u

;

where the summation is over all grid points in the same fluid column.
To calculate the residual function ~Fð~xÞ of MOM4, we use a state vector ~x defined as
~x ¼ ½~xuv ;~xg;~xt;~xs�; ðA:1Þ
consisting of the temperature ð~xtÞ, salinity ð~xsÞ and sea-surface height field ð~xgÞ at T-cells and the horizontal velocity field
ð~xuvÞ at U-cells. Assuming that these fields are available we use the following algorithm to compute the residual ~F:

8178 E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179
1. Compute variables which depend directly on the state vector, such as the sea-surface height at U-cells, gu, vertical grid
spacing at T and U-cells, DzT and DzU and vertically integrated velocity field ~U. The vertical grid spacing depends directly
on the sea-surface height fields while the vertically integrated horizontal velocity depends directly on the vertical grid
spacing and the 3D velocity field~u. The sea-surface height at U-cells is obtained by linear interpolation of the sea-surface
height at T-cells.

2. Compute the tendency dgT of gT using ~U and calculate the thickness weighted tendencies, d T and dS, for temperature and
salinity. Note that here we use the option to treat vertical diffusion explicitly rather than implicitly.

3. Compute tendencies for horizontal velocities.
(a) Compute the thickness weighted baroclinic velocity tendencies, d~u. These are obtained from the momentum equa-

tions, where the term Dzugrg is omitted from the pressure gradient term.
(b) Correct for the omitting part in the pressure gradient term by adjusting the thickness weighted velocity tendency as

follows
d~u d~u� Dzugrg:
The residual is now given by the vector~Fð~xÞ ¼ ~Fuvð~xÞ;~Fgð~xÞ;~Ftð~xÞ;~Fsð~xÞ
h i

with~Fuvð~xÞ ¼ d~u=DzU ,~Fgð~xÞ ¼ dgT ,~Ftð~xÞ ¼ dT=DzT

and ~Fsð~xÞ ¼ dS=DzT . Note that d~u, dT and dS contain the thickness weighted tendencies and these are converted to normal
tendencies by dividing by DzT or DzU.

Steps (2) and (3a) of the residual calculation require most of the coding, but these are the steps for which we can directly
reuse code from the time-stepping algorithm. Step (1) is relatively easily implemented because of the modular setup of
MOM4. Subroutines for calculating the vertical grid spacing at U and T-cells from the sea-surface height are directly available
and so are subroutines for interpolating fields from T-cells to U-cells. Only the vertically integrated velocity field needs to be
computed by hand in step (1), but this takes only a few lines of code. For step (3) a subroutine for calculating the omitted
term was already available.

There is one issue with the free-surface formulation. Due to volume conservation of the computational domain it holds
that the integral of the time derivative of the sea-surface height over the domain (it is only defined on a 2D domain) is zero.
By construction this property is retained in the numerical scheme and hence gT �~v ¼ 0, where ~v contains the area of the grid
cell on which the corresponding element in gT is defined. Since the time derivative of gT is a part of the residual vector ~Fð~xÞ
we have that~Fð~xÞ � ~w ¼ 0, where ~w ¼ ½0;~v ;0;0� is just ~v extended by zeros for the other components. The resulting Jacobian
satisfies
JT~w ¼ 0
and with ~w –; 0 this means that the Jacobian is singular and the JFNK method will break down. To solve this issue we remove
one of equations for the sea-surface height from the residual ~Fð~xÞ and replace it with the condition
~x � ~w ¼ 0: ðA:2Þ
The resulting Jacobian matrix will generically be non-singular and we can apply the JFNK method.
Hence, using this algorithm we can calculate the residual of MOM4 efficiently and reuse most of the original MOM4 code.

The same subroutines that are required for time stepping are also useful for the calculation of the residual and only the order
in which the subroutines are called slightly changes.
Appendix B. Method of Coleman

In Coleman et al. [23] and Coleman [24] a method is described that can be used to approximate the Jacobian matrix from a
residual~Fð~xÞ assuming that the sparsity pattern of the Jacobian is known. First we use the sparsity pattern of J to find a par-
tition C1, C2, C3, . . . ,Cq of it’s columns such that no two columns in Ck(k = 1, . . . ,q) share a non-zero entry on the same row.
Given a non-zero entry (i, j) of J we have a unique k such that j 2 Ck and we can use the finite difference approximation
Jij �
Fið~xþ �k;j~ejÞ � Fið~xÞ

�k;j
; ðB:1Þ
with~ej the j-th unit vector and for small values of �k,j. Since no two columns in Ck share a non-zero entry on the same row we
have that Ji�j ¼ 0 for each �j 2 Ck other than �j ¼ j and hence we can write
Jij �
Fið~xþ

P
�j2Ck
�k;j~ejÞ � Fið~xÞ
�k;j

¼ Fið~xþ~vÞ � Fið~xÞ
�k;j

;

with ~vk ¼
P

�j2Ck
�k;j~e�j. Hence we can approximate J using the residual evaluations ~F~ð~xÞ and ~Fð~xþ~vkÞðk ¼ 1;2; . . . ; qÞ. The effi-

ciency of the method is determined by the number of parts q of the column partitioning. In practice this number q is much
smaller than the dimension of~x and the number is determined by the stencil used in the discretization (and hence usually
independent of the resolution).

E. Bernsen et al. / Journal of Computational Physics 229 (2010) 8167–8179 8179
References

[1] S. Griffies, M. Harrison, R. Pacanowski, A. Rosati, A Technical Guide to MOM4, NOAA/Geophysical Fluid Dynamics Laboratory, 2004. <http://
www.gfdl.noaa.gov/fms>.

[2] R. Bleck, C. Rooth, D. Hu, L. Smith, Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the north
atlantic, J. Phys. Oceanogr. 22 (1992) 1486–1505.

[3] R. Bleck, An oceanic general circulation model framed in hybrid-cartesian coordinates, Ocean Model. 4 (2001) 55–88.
[4] S. Danilov, G. Kivman, J. Schröter, A finite-element ocean model: principles and evaluation, Ocean Model. 6 (2004) 125–150.
[5] M. Iskandarani, D. Haidvogel, J. Levin, A three-dimensional spectral element model for the solution of the hydrostatic primitive equations, J. Comp.

Phys. 186 (2003) 397–425.
[6] P. Roache, Computational Fluid Dynamics, Hermosa Publishing, Albequerque, NM, USA, 1976.
[7] H.A. Dijkstra, H. Öksüzŏglu, F.W. Wubs, E.F.F. Botta, A fully implicit model of the three-dimensional thermohaline ocean circulation, J. Comp. Phys. 173

(2001) 685–715.
[8] W. Weijer, H.A. Dijkstra, H. Oksuzoglu, F.W. Wubs, A.C. De Niet, A fully-implicit model of the global ocean circulation, J. Comp. Phys. 192 (2003) 452–

470.
[9] A.C. de Niet, F.W. Wubs, A.D. Terwisscha van Scheltinga, H.A. Dijkstra, A tailored solver for the bifurcation analysis of ocean-climate models, J. Comput.

Phys. 227 (2007) 654–679.
[10] S. Khatiwala, Fast spin up of ocean biogeochemical models using matrix-free Newton-Krylov, Ocean Model. 23 (2008) 121–129.
[11] X. Li, F. Primeau, A fast Newton-Krylov solver for seasonally varying global ocean biogeochemistry models, Ocean Model. 23 (2008) 13–20.
[12] E.Y. Kwon, F. Primeau, Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data, Global

Biogeochem. Cy. 20 (2006).
[13] T.M. Merlis, S. Khatiwala, Fast dynamical spin-up of ocean general circulation models using Newton-Krylov methods, Ocean Model. 21 (2008) 97–105.
[14] E. Bernsen, H.A. Dijkstra, F.W. Wubs, A method to reduce the spin-up time of ocean models, Ocean Model. 20 (2008) 380–392.
[15] E. Bernsen, H. Dijkstra, F. Wubs, Bifurcation analysis of the wind-driven ocean circulation with MOM4, Ocean Model. 30 (2009) 95–105.
[16] D. Knoll, D. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2004) 357–397.
[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.
[18] S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Optimization 4 (1994) 393–422.
[19] V. Frayssé, L. Giraud, S. Gratton, J. Langou, A Set of GMRES Routines for Real and Complex Arithmetics on High Performance Computers, CERFACS, 2003.

<http://www.cerfacs.fr/algor/reports/2003/TR_PA_03_03.pdf>.
[20] E.F.F. Botta, F.W. Wubs, MRILU: An effective algebraic multi-level ILU-preconditioner for sparse matrices, SIAM J. Matrix Anal. Appl. 20 (1999) 1007–

1026.
[21] V. Frayssé, L. Giraud, S. Gratton, A set of flexible-GMRES routines for real and complex arithmetics, in: CERFACS, 1998.
[22] R. Smith, P. Gent, Reference Manual for the Parallel Ocean Program (POP), 2002. <http://climate.lanl.gov/Models/POP/POP_Reference.ps>.
[23] T.F. Coleman, B.S. Garbow, J.J. Moré, Software for estimating sparse jacobian matrices, ACM T. Math. Software 10 (1984) 329–345.
[24] T.F. Coleman, B.S. Garbow, J.J. Moré, Algorithm 618: Fortran subroutines for estimating sparse jacobian matrices, ACM T. Math. Software 10 (1984)

346–347.

http://www.gfdl.noaa.gov/fms
http://www.gfdl.noaa.gov/fms
http://www.cerfacs.fr/algor/reports/2003/TR_PA_03_03.pdf
http://climate.lanl.gov/Models/POP/POP_Reference.ps

	The application of Jacobian-free Newton–Krylov methods to reduce the spin-up time of ocean general circulation models
	Introduction
	Application of the JFNK method to MOM4
	Specific problems
	Globalization
	Convective adjustment
	Preconditioning

	Results
	Summary and discussion
	Computation of the residual in MOM4
	Method of Coleman
	References

